Steven F. Udvar-Hazy Center: View down onto SR-71 Blackbird & Boeing P-26A Peashooter

Check out these surface grinding aluminum photos:

Steven F. Udvar-Hazy Center: View down onto SR-71 Blackbird & Boeing P-26A Peashooter

Image by Chris Devers
See a lot more photos of this, and the Wikipedia write-up.

Specifics, quoting from Smithsonian National Air and Space Museum | Boeing P-26A Peashooter:

The Boeing P-26A of the mid-to-late 1930s introduced the notion of the high-overall performance, all-metal monoplane fighter design and style, which would grow to be regular throughout World War II. A radical departure from wood-and-fabric biplanes, the Peashooter nonetheless retained an open cockpit, fixed landing gear, and external wing bracing.

Most P-26As stationed overseas had been ultimately sold to the Philippines or assigned to the Panama Canal Division Air Force, a branch of the U.S. Army Air Corps. Numerous went to China and one to Spain. This a single was primarily based at Selfridge Field in Michigan and Fairfield Air Depot in Ohio among its acceptance by the U.S. Army Air Corps in 1934 and its transfer to the Canal Zone in 1938. It was provided to Guatemala in 1942 and flew in the Guatemalan air force until 1954. Guatemala donated it to the Smithsonian in 1957.

Present of the Guatemalan Air Force, Republic of Guatemala

Manufacturer:
Boeing Aircraft Co.

Date:
1934

Nation of Origin:
United States of America

Dimensions:
Wingspan: eight.5 m (27 ft 11 in)
Length:7.three m (23 ft 11 in)
Height:three.1 m (10 ft 2 in)
Weight, empty:996 kg (two,196 lb)
Weight, gross:1,334 kg (two,935 lb)
Top speed:377 km/h (234 mph)
Engine:Pratt &amp Whitney R-1340-27, 600 hp
Armament:two .30 cal. M2 Browning aircraft machine guns

• • •

Quoting from Boeing History | P-26 &quotPeashooter&quot Fighter:

The all-metal, single-wing P-26, popularly identified as the &quotPeashooter,&quot was an totally new design and style for Boeing, and its structure drew heavily on the Monomail. The Peashooter’s wings have been braced with wire, rather than with the rigid struts utilised on other airplanes, so the airplane was lighter and had much less drag. Its initial high landing speeds have been lowered by the addition of wing flaps in the production models.

Since the P-26 flew 27 mph faster and outclimbed biplane fighters, the Army ordered 136 production-model Peashooters. Acclaimed by pilots for its speed and maneuverability, the modest but feisty P-26 formed the core of pursuit squadrons all through the United States.

Twelve export versions, 11 for China and 1 for Spain, were built. One of a group of P-26s, turned more than to the Philippine Army late in 1941, was among the first Allied fighters to down a Japanese airplane in Globe War II.

Funds to purchase the export version of the Peashooter have been partly raised by Chinese Americans. Contribution boxes were placed on the counters of Chinese restaurants.

Specifications

• 1st flight: March 20, 1932
• Model quantity: 248/266
• Classification: Fighter
• Span: 28 feet
• Length: 23 feet 7 inches
• Gross weight: 2,995 pounds
• Leading speed: 234 mph
• Cruising speed: 200 mph
• Range: 635 miles
• Ceiling: 27,400 feet
• Power: 600-horsepower P&ampW Wasp engine
• Accommodation: 1 pilot
• Armament: two machine guns, 200-pound bomb load

• • • • •

See far more pictures of this, and the Wikipedia article.

Details, quoting from Smithsonian National Air and Space Museum | Lockheed SR-71 Blackbird:

No reconnaissance aircraft in history has operated globally in a lot more hostile airspace or with such full impunity than the SR-71, the world’s fastest jet-propelled aircraft. The Blackbird’s efficiency and operational achievements placed it at the pinnacle of aviation technologies developments during the Cold War.

This Blackbird accrued about 2,800 hours of flight time throughout 24 years of active service with the U.S. Air Force. On its last flight, March 6, 1990, Lt. Col. Ed Yielding and Lt. Col. Joseph Vida set a speed record by flying from Los Angeles to Washington, D.C., in 1 hour, four minutes, and 20 seconds, averaging 3,418 kilometers (two,124 miles) per hour. At the flight’s conclusion, they landed at Washington-Dulles International Airport and turned the airplane more than to the Smithsonian.

Transferred from the United States Air Force.

Manufacturer:
Lockheed Aircraft Corporation

Designer:
Clarence L. &quotKelly&quot Johnson

Date:
1964

Country of Origin:
United States of America

Dimensions:
General: 18ft 5 15/16in. x 55ft 7in. x 107ft 5in., 169998.5lb. (5.638m x 16.942m x 32.741m, 77110.8kg)
Other: 18ft 5 15/16in. x 107ft 5in. x 55ft 7in. (5.638m x 32.741m x 16.942m)

Materials:
Titanium

Physical Description:
Twin-engine, two-seat, supersonic strategic reconnaissance aircraft airframe constructed largley of titanium and its alloys vertical tail fins are constructed of a composite (laminated plastic-type material) to lessen radar cross-section Pratt and Whitney J58 (JT11D-20B) turbojet engines feature huge inlet shock cones.

Extended Description:
No reconnaissance aircraft in history has operated in more hostile airspace or with such total impunity than the SR-71 Blackbird. It is the fastest aircraft propelled by air-breathing engines. The Blackbird’s efficiency and operational achievements placed it at the pinnacle of aviation technologies developments throughout the Cold War. The airplane was conceived when tensions with communist Eastern Europe reached levels approaching a full-blown crisis in the mid-1950s. U.S. military commanders desperately necessary accurate assessments of Soviet worldwide military deployments, especially close to the Iron Curtain. Lockheed Aircraft Corporation’s subsonic U-two (see NASM collection) reconnaissance aircraft was an able platform but the U. S. Air Force recognized that this comparatively slow aircraft was already vulnerable to Soviet interceptors. They also understood that the fast improvement of surface-to-air missile systems could place U-2 pilots at grave risk. The danger proved reality when a U-2 was shot down by a surface to air missile more than the Soviet Union in 1960.

Lockheed’s first proposal for a new higher speed, higher altitude, reconnaissance aircraft, to be capable of avoiding interceptors and missiles, centered on a design and style propelled by liquid hydrogen. This proved to be impracticable since of considerable fuel consumption. Lockheed then reconfigured the style for conventional fuels. This was feasible and the Central Intelligence Agency (CIA), already flying the Lockheed U-2, issued a production contract for an aircraft designated the A-12. Lockheed’s clandestine ‘Skunk Works’ division (headed by the gifted style engineer Clarence L. &quotKelly&quot Johnson) developed the A-12 to cruise at Mach 3.2 and fly properly above 18,288 m (60,000 feet). To meet these challenging specifications, Lockheed engineers overcame a lot of daunting technical challenges. Flying much more than three instances the speed of sound generates 316° C (600° F) temperatures on external aircraft surfaces, which are adequate to melt traditional aluminum airframes. The design and style team chose to make the jet’s external skin of titanium alloy to which shielded the internal aluminum airframe. Two standard, but really potent, afterburning turbine engines propelled this exceptional aircraft. These power plants had to operate across a enormous speed envelope in flight, from a takeoff speed of 334 kph (207 mph) to more than three,540 kph (two,200 mph). To avert supersonic shock waves from moving inside the engine intake causing flameouts, Johnson’s group had to design a complicated air intake and bypass technique for the engines.

Skunk Operates engineers also optimized the A-12 cross-section design and style to exhibit a low radar profile. Lockheed hoped to achieve this by cautiously shaping the airframe to reflect as small transmitted radar power (radio waves) as achievable, and by application of special paint made to absorb, rather than reflect, these waves. This treatment became a single of the 1st applications of stealth technology, but it by no means fully met the design objectives.

Test pilot Lou Schalk flew the single-seat A-12 on April 24, 1962, after he became airborne accidentally in the course of high-speed taxi trials. The airplane showed great promise but it necessary considerable technical refinement just before the CIA could fly the initial operational sortie on Might 31, 1967 – a surveillance flight over North Vietnam. A-12s, flown by CIA pilots, operated as portion of the Air Force’s 1129th Particular Activities Squadron below the &quotOxcart&quot program. Although Lockheed continued to refine the A-12, the U. S. Air Force ordered an interceptor version of the aircraft designated the YF-12A. The Skunk Performs, nonetheless, proposed a &quotspecific mission&quot version configured to conduct post-nuclear strike reconnaissance. This system evolved into the USAF’s familiar SR-71.

Lockheed constructed fifteen A-12s, including a special two-seat trainer version. Two A-12s were modified to carry a particular reconnaissance drone, designated D-21. The modified A-12s were redesignated M-21s. These had been developed to take off with the D-21 drone, powered by a Marquart ramjet engine mounted on a pylon amongst the rudders. The M-21 then hauled the drone aloft and launched it at speeds higher enough to ignite the drone’s ramjet motor. Lockheed also constructed 3 YF-12As but this sort never ever went into production. Two of the YF-12As crashed throughout testing. Only a single survives and is on show at the USAF Museum in Dayton, Ohio. The aft section of 1 of the &quotwritten off&quot YF-12As which was later utilised along with an SR-71A static test airframe to manufacture the sole SR-71C trainer. A single SR-71 was lent to NASA and designated YF-12C. Including the SR-71C and two SR-71B pilot trainers, Lockheed constructed thirty-two Blackbirds. The first SR-71 flew on December 22, 1964. Because of extreme operational costs, military strategists decided that the more capable USAF SR-71s should replace the CIA’s A-12s. These had been retired in 1968 following only one particular year of operational missions, mostly over southeast Asia. The Air Force’s 1st Strategic Reconnaissance Squadron (portion of the 9th Strategic Reconnaissance Wing) took over the missions, flying the SR-71 starting in the spring of 1968.

Soon after the Air Force began to operate the SR-71, it acquired the official name Blackbird– for the unique black paint that covered the airplane. This paint was formulated to absorb radar signals, to radiate some of the tremendous airframe heat generated by air friction, and to camouflage the aircraft against the dark sky at higher altitudes.

Experience gained from the A-12 program convinced the Air Force that flying the SR-71 safely necessary two crew members, a pilot and a Reconnaissance Systems Officer (RSO). The RSO operated with the wide array of monitoring and defensive systems installed on the airplane. This equipment included a sophisticated Electronic Counter Measures (ECM) technique that could jam most acquisition and targeting radar. In addition to an array of sophisticated, higher-resolution cameras, the aircraft could also carry gear created to record the strength, frequency, and wavelength of signals emitted by communications and sensor devices such as radar. The SR-71 was designed to fly deep into hostile territory, avoiding interception with its tremendous speed and higher altitude. It could operate safely at a maximum speed of Mach three.three at an altitude far more than sixteen miles, or 25,908 m (85,000 ft), above the earth. The crew had to wear pressure suits comparable to these worn by astronauts. These suits have been needed to shield the crew in the occasion of sudden cabin pressure loss even though at operating altitudes.

To climb and cruise at supersonic speeds, the Blackbird’s Pratt &amp Whitney J-58 engines were developed to operate constantly in afterburner. Whilst this would seem to dictate higher fuel flows, the Blackbird actually achieved its greatest &quotgas mileage,&quot in terms of air nautical miles per pound of fuel burned, for the duration of the Mach three+ cruise. A typical Blackbird reconnaissance flight might call for numerous aerial refueling operations from an airborne tanker. Each time the SR-71 refueled, the crew had to descend to the tanker’s altitude, normally about six,000 m to 9,000 m (20,000 to 30,000 ft), and slow the airplane to subsonic speeds. As velocity decreased, so did frictional heat. This cooling impact triggered the aircraft’s skin panels to shrink considerably, and these covering the fuel tanks contracted so significantly that fuel leaked, forming a distinctive vapor trail as the tanker topped off the Blackbird. As quickly as the tanks have been filled, the jet’s crew disconnected from the tanker, relit the afterburners, and once more climbed to higher altitude.

Air Force pilots flew the SR-71 from Kadena AB, Japan, throughout its operational career but other bases hosted Blackbird operations, as well. The 9th SRW occasionally deployed from Beale AFB, California, to other places to carryout operational missions. Cuban missions were flown straight from Beale. The SR-71 did not begin to operate in Europe until 1974, and then only temporarily. In 1982, when the U.S. Air Force based two aircraft at Royal Air Force Base Mildenhall to fly monitoring mission in Eastern Europe.

When the SR-71 became operational, orbiting reconnaissance satellites had already replaced manned aircraft to collect intelligence from internet sites deep within Soviet territory. Satellites could not cover each geopolitical hotspot so the Blackbird remained a vital tool for worldwide intelligence gathering. On many occasions, pilots and RSOs flying the SR-71 offered details that proved important in formulating successful U. S. foreign policy. Blackbird crews supplied important intelligence about the 1973 Yom Kippur War, the Israeli invasion of Lebanon and its aftermath, and pre- and post-strike imagery of the 1986 raid performed by American air forces on Libya. In 1987, Kadena-primarily based SR-71 crews flew a number of missions more than the Persian Gulf, revealing Iranian Silkworm missile batteries that threatened industrial shipping and American escort vessels.

As the performance of space-primarily based surveillance systems grew, along with the effectiveness of ground-primarily based air defense networks, the Air Force began to drop enthusiasm for the costly program and the 9th SRW ceased SR-71 operations in January 1990. Despite protests by military leaders, Congress revived the plan in 1995. Continued wrangling over operating budgets, however, soon led to final termination. The National Aeronautics and Space Administration retained two SR-71As and the a single SR-71B for higher-speed analysis projects and flew these airplanes till 1999.

On March 6, 1990, the service profession of a single Lockheed SR-71A Blackbird ended with a record-setting flight. This unique airplane bore Air Force serial number 64-17972. Lt. Col. Ed Yeilding and his RSO, Lieutenant Colonel Joseph Vida, flew this aircraft from Los Angeles to Washington D.C. in 1 hour, 4 minutes, and 20 seconds, averaging a speed of 3,418 kph (2,124 mph). At the conclusion of the flight, ‘972 landed at Dulles International Airport and taxied into the custody of the Smithsonian’s National Air and Space Museum. At that time, Lt. Col. Vida had logged 1,392.7 hours of flight time in Blackbirds, much more than that of any other crewman.

This specific SR-71 was also flown by Tom Alison, a former National Air and Space Museum’s Chief of Collections Management. Flying with Detachment 1 at Kadena Air Force Base, Okinawa, Alison logged more than a dozen ‘972 operational sorties. The aircraft spent twenty-four years in active Air Force service and accrued a total of 2,801.1 hours of flight time.

Wingspan: 55’7&quot
Length: 107’5&quot
Height: 18’6&quot
Weight: 170,000 Lbs

Reference and Additional Reading:

Crickmore, Paul F. Lockheed SR-71: The Secret Missions Exposed. Oxford: Osprey Publishing, 1996.

Francillon, Rene J. Lockheed Aircraft Because 1913. Annapolis, Md.: Naval Institute Press, 1987.

Johnson, Clarence L. Kelly: More Than My Share of It All. Washington D.C.: Smithsonian Institution Press, 1985.

Miller, Jay. Lockheed Martin’s Skunk Performs. Leicester, U.K.: Midland Counties Publishing Ltd., 1995.

Lockheed SR-71 Blackbird curatorial file, Aeronautics Division, National Air and Space Museum.

DAD, 11-11-01